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Multi-region relaxed magnetohydrodynamics with anisotropy and flow
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We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD)

equilibrium model that includes pressure anisotropy and general plasma flows. This anisotropic

extension to our previous isotropic model is motivated by Sun and Finn’s model of relaxed

anisotropic magnetohydrodynamic equilibria. We prove that as the number of plasma regions

becomes infinite, our anisotropic extension of MRxMHD reduces to anisotropic ideal MHD with

flow. The continuously nested flux surface limit of our MRxMHD model is the first variational

principle for anisotropic plasma equilibria with general flow fields. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4890847]

I. INTRODUCTION

The construction of magnetohydrodynamic (MHD) equi-

libria in three-dimensional (3D) configurations is of funda-

mental importance for understanding toroidal magnetically

confined plasmas. The theory and numerical construction of

3D equilibria is complicated by the fact that toroidal magnetic

fields without a continuous symmetry are generally a fractal

mix of islands, chaotic field lines, and magnetic flux surfaces.

Hole et al.2 have proposed a variational method for isotropic

3D MHD equilibria that embrace this structure by abandoning

the assumption of continuously nested flux surfaces usually

made when applying ideal MHD. Instead, a finite number of

flux surfaces are assumed to exist in a partially relaxed plasma

system. This model, termed a multi-region relaxed MHD

(MRxMHD) model, is based on a generalization of the Taylor

relaxation model3,4 in which the total energy (field plus

plasma) is minimized subject to a finite number of magnetic

flux, helicity, and thermodynamic constraints.

Obtaining 3D MHD equilibria that include islands and

chaotic fields is a difficult problem, and a number of alterna-

tive approaches have been developed, including iterative

approaches5,6 and variational methods for linearized pertur-

bations about equilibria with nested flux surfaces.7,8 In

general, variational methods have more robust convergence

guarantees than iterative methods, and all else being equal,

are usually preferable. However, variational methods for

plasma equilibria require constraints to be specified and

enforced in order to obtain non-vacuum solutions. The varia-

tional methods employed by Hirshman et al.7 and Helander

and Newton8 specify these constraints in terms of the flux

surfaces of a nearby equilibrium with nested flux surfaces.

These methods are therefore necessarily perturbative, as

opposed to the iterative methods of Reiman and Greenside5

and Suzuki et al.6 which aim to solve the full nonlinear 3D

MHD equilibrium problem. The MRxMHD model is a varia-

tional method and must also enforce constraints to obtain

non-vacuum solutions. The approach taken by MRxMHD

is to assume the existence of a finite number of good flux

surfaces, and to enforce plasma constraints in the regions

bounded by these good flux surfaces. This approach allows

MRxMHD to solve the full nonlinear 3D MHD equilibrium

problem with the assumption that there exist a finite

number of flux surfaces that survive the relaxation process.

This assumption is motivated by the work of Bruno and

Laurence,9 who have proved that for sufficiently small devia-

tions from axisymmetry such flux surfaces will exist and that

they can support non-zero pressure jumps.

The MRxMHD model has seen some recent success in

describing the 3D quasi-single-helicity states in RFX-

mod;10 however, it must be extended to include anisotropic

pressure as significant anisotropy is observed in high-

performance devices, particularly in the presence of neutral

beam injection and ion-cyclotron resonance heating.11–13

Our extension of MRxMHD to include pressure anisotropy

is guided by the work of Sun and Finn1 who studied a model

for relaxed anisotropic plasmas by constraining the parallel

and perpendicular entropies Sk ¼
Ð

qlnðpkB2=q3Þ d3s and

S? ¼
Ð

qln½p?=ðqBÞ� d3s, in addition to the flux and mag-

netic helicity constraints considered by Taylor.4 The model

studied by Sun and Finn is a special case of the single

plasma-region, zero-flow limit of the anisotropic MRxMHD

model presented in this paper.

In the opposite limit, as the number of plasma interfaces

becomes large and the plasma contains continuously nested

flux surfaces, it is desirable for anisotropic MRxMHD to

reduce to anisotropic ideal MHD. We prove this limit to be

true in Sec. III, demonstrating that anisotropic MRxMHD

(with flow) essentially “interpolates” between an anisotropic

Taylor-Woltjer relaxation theory on the one hand and aniso-

tropic ideal MHD with flow on the other. The continuously

nested flux surface limit of anisotropic MRxMHD is, to the

authors’ knowledge, the first variational energy principle for

anisotropic plasma equilibria with general flow fields. This is

a generalization of earlier work developing variational prin-

ciples for isotropic plasma equilibria with flow.14

This paper is structured as follows: in Sec. II, we give a

summary of the MRxMHD model and its solution for a finitea)graham.dennis@anu.edu.au
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number of plasma regions before presenting our extension to

include pressure anisotropy. In Sec. III, we prove that this

extension of MRxMHD reduces to anisotropic MRxMHD

with flow in the limit of continuously nested flux surfaces.

This is followed by an example application of the anisotropic

MRxMHD model to a reversed-field pinch (RFP) plasma in

Sec. IV. The paper is concluded in Sec. V.

II. THE MULTI-REGION RELAXED MHD MODEL

A. The isotropic, zero-flow limit

The model we present in this paper is an extension of

the MRxMHD model introduced previously.2,15–17 Briefly,

the MRxMHD model consists of N nested plasma regions Ri

separated by ideal MHD barriers I i (see Fig. 1). Each plasma

region is assumed to have undergone Taylor relaxation4 to a

minimum energy state subject to conserved fluxes and mag-

netic helicity. The MRxMHD model minimizes the plasma

energy

E ¼
X

i

Ei ¼
X

i

ð
Ri

1

2
B2 þ 1

c� 1
p

� �
d3s; (1)

where we have used units such that l0¼ 1, and the minimi-

zation of Eq. (1) is subject to constraints on the plasma mass

Mi and the magnetic helicity Ki, which are given by

Mi ¼
ð
Ri

q d3s; (2)

Ki ¼
ð
Ri

A � B d3s� Dwp;i

þ
C<p;i

A � dl� Dwt;i

þ
C>t;i

A � dl; (3)

where p is the plasma pressure, q is the plasma mass density,

A is the magnetic vector potential, and the loop integrals in

Eq. (3) are required for gauge invariance. The plasma in

each volume is assumed to obey the adiabatic equation of

state ri¼ p/qc with ri constant in each region. Additionally,

each plasma region Ri is bounded by magnetic flux surfaces

and is constrained to have enclosed toroidal flux Dwt,i and

poloidal flux Dwp,i. The C<p;i and C>t;i are circuits about the

inner (<) and outer (>) boundaries of Ri in the poloidal and

toroidal directions, respectively.

Minimum energy states of the MRxMHD model are sta-

tionary points of the energy functional

W ¼
X

i

Ei � �i Mi �M0
i

� �
� 1

2
li Ki � K0

i

� �� �
; (4)

where �i and li are Lagrange multipliers, respectively,

enforcing the plasma mass and magnetic helicity constraints,

and the M0
i and K0

i are, respectively, the constrained values

of the plasma mass and magnetic helicity.

Setting the first variation of Eq. (4) to zero gives15

r� B ¼ liB; (5)

pi ¼ const; (6)

0 ¼ pi þ
1

2
B2

� �� �
; (7)

where Eqs. (5) and (6) apply in each plasma region Ri, Eq.

(7) applies on each ideal interface I i, and [[x]]¼ xiþ1 – xi

denotes the change in the quantity x across the interface I i.

B. Including the effects of plasma flow

In previous work, we extended the MRxMHD model to

include plasma flow.18 That model is defined by minimizing

the plasma energy

E ¼
X

i

Ei ¼
X

i

ð
Ri

1

2
qu2 þ 1

2
B2 þ 1

c� 1
p

� �
d3s; (8)

where u is the mean plasma velocity. The minimization of

the plasma energy is subject to constraints on the plasma

mass and helicity given by Eqs. (2) and (3), and additional

constraints on the flow helicity Ci and toroidal angular mo-

mentum Li, which are given by

Ci ¼
ð
Ri

B � u d3s; (9)

Li ¼ Ẑ �
ð
Ri

qr� u d3s ¼
ð
Ri

qRu � /̂ d3s; (10)

where the ðR; Z;/Þ cylindrical coordinate system is used

with Ẑ a unit vector pointing along the axis of symmetry,

and / the toroidal angle.

As described in detail in Dennis et al.,18 constraining

the toroidal angular momentum Li in each plasma region

requires assuming the plasma to be axisymmetric. A more

appropriate model for 3D MHD structures is obtained if

instead only the total toroidal angular momentum L ¼
P

i Li

is constrained.19 This only requires the assumption that the
FIG. 1. Schematic of magnetic geometry showing ideal MHD barriers I i

and the relaxed plasma regionsRi.
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outer plasma boundary be axisymmetric. In the case of stel-

larators or other situations where the plasma boundary is not

axisymmetric, the toroidal angular momentum constraint

must be relaxed entirely.

In our earlier work,18 we solved this variational problem

assuming the adiabatic equation of state p¼ riq
c, where ri is

constant in each plasma region. This is appropriate if relaxa-

tion is assumed to occur fast enough that heat transport is

negligible. An alternative approach, which was taken by

Finn and Antonsen,20 is to instead maximize the plasma

entropy in each region, while conserving the plasma energy,

mass, helicity, flow helicity, and angular momentum. This is

equivalent to assuming that parallel heat transport is rapid

and that the plasma has reached thermal equilibrium along

each field line. Finn and Antonsen20 prove that the Euler-

Lagrange equations (Eqs. (5)–(7)) obtained from this

approach are identical to those obtained by instead minimiz-

ing the plasma energy while holding the plasma entropy and

other constraints fixed. The only difference between these

two approaches is that for a given initial state, the final

relaxed states will be different if entropy is maximized while

conserving energy versus minimizing energy while conserv-

ing entropy. In this article, we will take the approach of

minimizing energy for consistency with our earlier

work,2,15–18,21 however identical Euler-Lagrange equations

are obtained with either approach.

The two equations of state used to complete the

MRxMHD model with flow, namely, assuming the adiabatic

equation of state p¼ riq
c or conserving the plasma entropy

are described in Secs. II B 1 and II B 2.

1. Adiabatic equation of state

If the adiabatic equation of state p¼ riq
c is assumed, the

minimum energy states are stationary points of the energy

functional

W ¼
X

i

Ei � �i Mi �M0
i

� �
� 1

2
li Ki � K0

i

� ��

�ki Ci � C0
i

� �
� Xi Li � L0

i

� ��
; (11)

where ki and Xi are Lagrange multipliers enforcing the flow-

helicity and angular momentum constraints.

We have previously shown that the minimum energy

states of this model satisfy18

r� B ¼ liBþ kir� u; (12)

qu ¼ kiBþ qXiR/̂; (13)

�i ¼
1

2
u2 þ c

c� 1

p

q
� XiRu � /̂; (14)

p ¼ riq
c; (15)

0 ¼ 1

2
B2 þ p

� �� �
: (16)

In contrast to the zero-flow limit, pressure is not constant in

each plasma region, but instead there are non-zero pressure

gradients. This model was discussed in detail in our earlier

work.18

2. Conservation of entropy

Instead of assuming the adiabatic equation of state, an

alternative is to conserve the plasma entropy

Si ¼
ð
Ri

1

c� 1
qln

p

qc

� �
d3s: (17)

In this case, the energy functional Eq. (11) gains the addi-

tional term �
P

i TiðSi � S0
i Þ, where Ti is a Lagrange multi-

plier that will be identified as the plasma temperature.

The minimum energy states of this model satisfy

r� B ¼ liBþ kir� u; (18)

qu ¼ kiBþ qXiR/̂; (19)

�i ¼
1

2
u2 � Ti

c� 1
ln

p

qc

� �
� c

� �
� XiRu � /̂; (20)

p ¼ qTi; (21)

0 ¼ 1

2
B2 þ p

� �� �
; (22)

where from Eq. (21) we can identify the Lagrange multiplier

Ti as the plasma temperature in each region (in units

where the Boltzmann constant kB¼ 1). The model given by

Eqs. (18)–(22) is the isotropic limit of the anisotropic

MRxMHD model presented in Sec. III. A derivation of that

model is given in Appendix A.

In this model, the plasma has constant temperature Ti in

each region. Note that in deriving Eq. (21), we have not

assumed that the plasma obeys an isothermal equation of

state during relaxation, as the temperature Ti is not known a
priori. Instead, the final equilibrium temperatures in each

region are determined by the conservation of plasma entropy

in each region, and may change from their initial values.

In the zero-flow limit, the conservation of entropy

approach is equivalent to assuming the adiabatic equation

of state. In this limit, the two are related by

ri ¼ exp ½ðc� 1ÞS0
i =M0

i �. Thus in the zero-flow limit, both

MRxMHD flow models reduce to the zero-flow model pre-

sented in Sec. II A.

C. Including the effects of pressure anisotropy

We present here an extension to MRxMHD to include

the effects of pressure anisotropy. This model is an extension

to our previous work that included the effects of bulk plasma

flow,18 and includes ideas from the work of Sun and Finn.1

In our model, each plasma region is assumed to have
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 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

198.35.1.205 On: Mon, 21 Jul 2014 14:15:26



undergone a generalized type of Taylor relaxation which

minimizes the plasma energy

E ¼
X

i

Ei ¼
X

i

ð
Ri

1

2
qu2 þ 1

2
B2 þ 1

2
pk þ p?

� �
d3s (23)

subject to constraints of the plasma mass Mi (Eq. (2)), mag-

netic helicity Ki (Eq. (3)), flow helicity Ci (Eq. (9)), angular

momentum Li (Eq. (10)), and the additional quantities

Si ¼
ð
Ri

1

2
qln

pkp
2
?

q5

 !
d3s; (24)

Gi F½ � ¼
ð
Ri

qF
p?
qB

� �
d3s; (25)

where Si is the anisotropic plasma entropy, and Gi[F] is a con-

served quantity related to the magnetic moment of the plasma

gyro-motion, which is written in terms of the unspecified

function F(p?/qB). Additionally, pk and p? are the parallel

and perpendicular pressures, and B ¼ jBj is the magnitude of

the magnetic field. The plasma quantities constrained by this

model are all conserved by the double-adiabatic anisotropic

ideal MHD model (the Chew-Goldberger-Low model22) and

are assumed to be robust in the presence of small amounts of

resistivity and viscosity. The anisotropic entropy (Eq. (24))

reduces to the isotropic entropy (Eq. (17)) in the limit pk¼ p?
with c¼ 5/3.

The constraints Si and Gi are a generalization of the par-

allel and perpendicular entropies defined by Sun and Finn1

Sk ¼
ð

q ln
pkB

2

q3

 !
d3s; (26)

S? ¼
ð

q ln
p?
qB

� �
d3s; (27)

where Si ¼ 1
2

Sk þ S? and Gi¼ S? with the function F(x) in

Eq. (25) given by the choice FðxÞ ¼ lnðxÞ. Hence, our choice

of constraints Si and Gi include those considered by Sun and

Finn,1 but are more general as the function F(x) is unspeci-

fied. This unspecified function can be thought of as an aniso-

tropic equation of state, and in Sec. III A is shown to be

related to the anisotropic plasma enthalpy. Another valid

choice for F(x) is F(x)¼ x, which corresponds to constrain-

ing the quantity
Ð
ðp?=BÞ d3s. We show in Sec. III A that this

choice of F(x) is equivalent to the two-temperature guiding-

centre plasma equation of state in anisotropic ideal MHD.23

The choice to constrain the quantity Gi is motivated by

the magnetic moment adiabatic invariant ~l, in which the

CGL anisotropic MHD model,22 is assumed to be constant

along magnetic field lines

d

dt
~l ¼ d

dt

p?
qB

� �
¼ 0: (28)

This equation of motion corresponds to the infinity of

constraints

G F½ � ¼
ð

qF
p?
qB

� �
d3s (29)

for all functions F(x). The model presented in this work

selects one element of this class of invariants as the most

conserved of this class. Choosing the function F(x) specifies

this choice and is effectively an anisotropic equation of state.

Minimum energy states of the MRxMHD model with

anisotropy and flow are stationary points of the energy

functional

W ¼
X

i

Ei � �i Mi �M0
i

� �
� 1

2
li Ki � K0

i

� ��

�ki Ci � C0
i

� �
� Xi Li � L0

i

� �
�Ti Si � S0

i

� �
� gi Gi � G0

i

� �i
; (30)

where gi is a Lagrange multiplier enforcing the constraint on

the quantity Gi.

Setting the first variation of Eq. (30) to zero gives the

plasma region conditions

r� B ¼ liBþ kir� uþr�
pk � p?

B2

� �
B

� �
; (31)

qu ¼ kiBþ qXiR/̂; (32)

�i ¼
1

2
u2 � 1

2
Ti ln

pkp
2
?

q5

 !
� 5

" #

�giF
p?
qB

� �
�

pk � p?

q
� XiRu � /̂; (33)

pk ¼ qTi; (34)

p? ¼ qTi þ gi

p?
B

F0
p?
qB

� �
(35)

together with the interface force-balance condition

1

2
B2 þ p?

� �� �
¼ 0: (36)

A derivation of these equations is given in Appendix A.

Taking the isotropic limit (g¼ 0) gives MRxMHD with

flow with conserved entropy (see Sec. II B 2) with c¼ 5/3.

In Appendix B, we show that the MRxMHD minimum

energy states described by Eqs. (31)–(35) satisfy

qðu � rÞu ¼�r � P
$
þ J� B

�qXiR/̂ � ðr � uÞ þ qXirðRu � /̂Þ; (37)

where P
$

is the pressure tensor, which is given by

P
$
¼ p? I

$
þ ðpk � p?ÞBB=B2; (38)

with I
$

the identity tensor. The last two terms on the right-

hand side of Eq. (37) are perhaps unexpected, and are
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discussed in further detail below. In the limit that the plasma

minimum energy state is axisymmetric, these two terms are

zero,18 and we recover the expected anisotropic ideal MHD

equilibrium equation

qðu � rÞu ¼ �r � P
$
þ J� B: (39)

We discussed the effect of the last two terms of Eq. (37)

in the context of isotropic MRxMHD with flow in Dennis

et al.;18 indeed, Eq. (37) is identical to Eq. (16) of Dennis

et al.18 with r � P
$

replacing rp. For stellarators or other

plasmas with a fixed non-axisymmetric outer boundary,

these terms do not appear because (in the absence of any

proof to the contrary) it must be assumed that even a smooth

rigid outer boundary may exert a torque on a flowing plasma.

In Dennis et al.,18 we showed that a contradiction would

arise if toroidal angular momentum was assumed to be con-

served. Thus toroidal angular momentum cannot be assumed

to be conserved, and therefore the angular momentum terms

must be dropped from Eq. (30) (i.e., the Xi are zero). The

last two terms of Eq. (37) are only non-zero for non-

axisymmetric minimum energy states with a (fixed) axisym-

metric outer boundary. In this case, Eq. (37) is equivalent to

force-balance in a reference frame rotating about the Z axis

with angular frequency Xi. These non-axisymmetric equili-

bria will be time-dependent in the laboratory frame, but will

be time-independent in a reference frame rotating with angu-

lar frequency Xi about the Z axis. This feature was discussed

in detail in our earlier work on MRxMHD with flow.18

1. Choices for the function F(x)

If the choice FðxÞ ¼ lnðxÞ is made as in Sun and Finn,1

then the parallel and perpendicular temperatures are constant

in each plasma region

pk ¼ qTi; (40)

p? ¼ qðgi þ TiÞ: (41)

The Bernoulli equation (Eq. (33)) becomes

�i ¼
1

2
u2 � 1

2
Ti ln

Ti Ti þ gið Þ2

q2

 !
� 5

" #

�gi ln
Ti þ gi

B

� �
� 1

� �
� XiRu � /̂: (42)

If instead the choice F(x)¼ x is made, then the parallel

temperature is constant in each plasma region, but the per-

pendicular temperature depends on the magnitude of the

magnetic field B

pk ¼ qTi; (43)

p? ¼ qTi
B

B� gi

: (44)

The Bernoulli equation (Eq. (33)) becomes

�i ¼
1

2
u2 � 1

2
Ti ln

T3
i

q2 1� gi=Bð Þ2

 !
� 5

" #

�XiRu � /̂: (45)

The pressure equations given by Eqs. (43)–(44) are identical

to those of the guiding-centre plasma two-temperature clo-

sure relations (see Eq. (34) of Iacono et al.23). It is shown in

Sec. III that the choice F(x)¼ x corresponds identically to

this model in the continuously nested flux surface limit.

2. Summary

We have presented a multi-region relaxation model for

plasmas which includes both anisotropy and flow. We

validate our model in Sec. III by proving that it approaches

anisotropic ideal MHD with flow in the limit as the number

of plasma volumes N becomes large, and this is independent

of the choice of the function F(x). We have previously

proven that MRxMHD with flow approaches ideal MHD

with flow.18

III. THE CONTINUOUSLY NESTED FLUX-SURFACE
LIMIT

In this section, we take the continuously nested flux sur-

face limit (N!1) of anisotropic MRxMHD and prove that

it reduces to anisotropic ideal MHD.

Taking the limit of infinitesimally small plasma regions

of the energy functional Eq. (30) gives

W ¼
ð

1

2
qu2 þ 1

2
B2 þ 1

2
pk þ p?

� �
d3s

�
ð
� sð Þ dM � dM0ð Þ �

ð
1

2
l sð Þ dK � dK0ð Þ

�
ð

k sð Þ dC� dC0ð Þ �
ð

X sð Þ dL� dL0ð Þ

�
ð

T sð Þ dS� dS0ð Þ �
ð

g sð Þ dG� dG0ð Þ; (46)

where s is an arbitrary flux-surface label; dM, dK, dC, dL, dS
and dG are, respectively, infinitesimal amounts of plasma

mass, magnetic helicity, flow helicity, toroidal angular mo-

mentum, plasma entropy, and the magnetic dipole constraint

G between infinitesimally separated flux surfaces; and dM0,

dK0, dC0, dL0, dS0, and dG0 are the corresponding

constraints.

In the finite-volume limit, the magnetic flux constraints

are enforced by restricting the class of perturbations of the

vector potential dA (see Appendix A), and these constraints

are therefore not included in the energy functional given by

Eq. (46). In the limit of continuously nested flux surfaces, we

use the same approach we used in Dennis et al.18 and intro-

duce a vector of Lagrange multipliers Q ¼ Qsðs; h; fÞrs
þQhðsÞrhþ QfðsÞrf to enforce the radial, poloidal, and

toroidal magnetic flux constraints in an (s, h, f) coordinate

system with h an arbitrary poloidal angle coordinate and f an

arbitrary toroidal angle coordinate. As detailed in Sec. III A

of Dennis et al.,18 enforcing the magnetic flux constraints
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requires adding the following terms to the right-hand side of

the energy functional Eq. (46)

Wjflux constraints ¼ �
ð

Q � Bð Þ d3s

þ 2p
ð

Qh sð Þ
dw0

p sð Þ
ds

þ Qf sð Þ dw0
t sð Þ

ds

" #
ds;

(47)

where wp(s) and wt(s) are, respectively, the poloidal and

toroidal magnetic fluxes enclosed by the flux surface with

label s.

In Dennis et al.,18 we showed that the magnetic helicity

constraint is trivially satisfied in the limit of continuously

nested flux surfaces with dK¼ dK0 following from conserva-

tion of the magnetic fluxes within every flux surface.

Therefore the magnetic helicity term
Ð

1
2
lðsÞðdK � dK0Þ ds

in Eq. (46) is zero.

With these simplifications, we obtain the energy

functional

W ¼
ð

1

2
qu2 þ 1

2
B2 þ 1

2
pk þ p? �Q � B� � sð Þq

�
�k sð ÞB � u� qX sð ÞRu � /̂

� 1

2
T sð Þqln

pkp
2
?

q5

 !
� g sð ÞqF

p?
qB

� �#
d3s

þ
ð

2pQh sð Þ
dw0

p sð Þ
ds

þ 2pQf sð Þ
dw0

t sð Þ
ds

"

þ � sð Þ dM0 sð Þ
ds

þ k sð Þ dC0 sð Þ
ds

þ X sð Þ dL0 sð Þ
ds

þT sð Þ
dS0 sð Þ

ds
þ g sð Þ

dG0 sð Þ
ds

�
ds: (48)

Requiring zero variations of W with respect to the Lagrange

multipliers enforces the corresponding constraints. The inter-

esting variations are those with respect to pk, p?, q, u, B, and

the position of the flux surfaces x.

Setting the variation of W with respect to pk, p?, q, u,

and B to zero yield, respectively

pk ¼ qTðsÞ; (49)

p? ¼ qT sð Þ þ g sð Þ
p?
B

F0
p?
qB

� �
; (50)

� sð Þ ¼ 1

2
u2 � 1

2
T sð Þ ln

pkp
2
?

q5

 !
� 5

" #

�g sð ÞF p?
qB

� �
�

pk � p?

q
� X sð ÞRu � /̂; (51)

qu ¼ kðsÞBþ qXðsÞR/̂; (52)

Q ¼ B� k sð Þu�
pk � p?

B2

� �
B: (53)

Using a very similar process to our earlier work,18 the

variation of W with respect to dx can be simplified to obtain

dWjdx ¼
ð

dx � ½qðu � rÞu� J� Bþr � P
$

þqXR/̂ � ðr � uÞ � qXrðRu � /̂Þ�; (54)

where we have used

r � P
$
¼rp? þ B B � rð Þ pk � p?

B2

� �

þ
pk � p?

B2
B � rð ÞB; (55)

which follows from the definition of the pressure tensor P
$

given by Eq. (38).

Setting the variation dWjdx to zero gives

qðu �rÞu¼�r�P
$
þJ�B

�qXðsÞR/̂�ðr�uÞþqXðsÞrðRu � /̂Þ; (56)

which is identical to Eq. (37) with the replacement

Xi!X(s), and is an equation for force-balance in a reference

frame rotating with angular velocity X(s) about the Z axis.

A. The relationship between F(x) and plasma enthalpy

The anisotropic ideal MHD Bernoulli equation is

usually written in terms of an unspecified plasma enthalpy24

H(q, B, s)

� sð Þ ¼ 1

2
u2 � X sð ÞRu � /̂ þ H q;B; sð Þ: (57)

To satisfy conservation of energy, the enthalpy must satisfy

the integrability conditions23

@H

@q

� �
B;s

¼ 1

q

@pk
@q

� �
B;s

; (58)

@H

@B

� �
q;s
¼ 1

q

@pk
@B

� �
q;s
�

pk � p?

B

" #
: (59)

By comparison with the Bernoulli equation we have

derived, Eq. (51), we can identify the plasma enthalpy

to be

H q;B; sð Þ ¼ � 1

2
T sð Þ ln

pkp
2
?

q5

 !
� 5

" #

�g sð ÞF
p?
qB

� �
�

pk � p?

q
; (60)

which can be shown to satisfy the integrability conditions

Eqs. (58) and (59) for any choice of F(x).

If the function F is chosen to be F(x)¼ x, then similar

expressions to what were obtained in the finite plasma region

limit, we obtain expressions for the plasma pressures

pk ¼ qTðsÞ; (61)
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p? ¼ qT sð Þ B

B� g sð Þ
; (62)

which are identical to the equations of state for the two-

temperature guiding-centre plasma model (see Iacono et al.23).

B. Summary

We have now proven that as the number of plasma

regions N becomes large in the anisotropic MRxMHD with

flow model that the model reduces to anisotropic ideal MHD

with flow. The minimum energy state may not be time-

independent in the laboratory reference frame, but will be

time-independent in a rotating reference frame depending on

the symmetry assumptions made in the model (see Dennis

et al.18 for details).

The energy functional given by Eq. (48) also represents

the first variational principle for anisotropic plasma equili-

bria with general flow fields. This variational principle can

be considered to be a generalization of that for isotropic

plasma equilibria with flow described by Hameiri.14

In Sec. IV, we provide a simple example calculation

using our anisotropic MRxMHD model.

IV. EXAMPLE APPLICATION

In this section, we apply our anisotropic MRxMHD

model to an RFP-like plasma in the zero-flow limit. We have

previously presented a calculation with finite flow in the

isotropic limit in earlier work.18 Our example calculation is

motivated by the experimental results of Sasaki et al.,25 who

observed ion temperature anisotropy in the EXTRAP-T2

reversed-field pinch. In their work, Sasaki et al. measured

the parallel ion temperature to be 1–3 times larger than the

perpendicular temperature. Anisotropic plasma pressures

have also been observed on MST during reconnection

events,26 however on that experiment, the perpendicular tem-

perature was observed to be greater. In this example, we

focus on the results of the EXTRAP-T2 experiment.

We model EXTRAP-T2 experiment of Sasaki et al. with

single-volume anisotropic MRxMHD with zero plasma flow.

Additionally, we choose FðxÞ ¼ lnðxÞ in Eq. (25) as this

yields a constant ratio of parallel to perpendicular tempera-

ture, which accords with the analysis of Sasaki et al. In this

limit, the anisotropic MRxMHD equations (Eqs. (31)–(35))

in SI units are

r� B ¼ lB� kBgr� l0q
B2

B

� �
; (63)

q ¼ q0

B

B0

� ��g=T

; (64)

pk ¼ qkBT; (65)

p? ¼ qkBðT þ gÞ; (66)

where q0 is a constant reference density, B0 is a constant ref-

erence magnetic field, and kB is Boltzmann’s constant.

Figure 2 illustrates the results of this model. The equilib-

rium is described by l¼ 14.4 m–1, T¼ 250 eV, g¼�170 eV,

q0¼ 8.9� 1019 m�3, with B0¼ 1 T. These values have been

chosen to ensure that the model agrees with the average

experimental parameters observed during t� 7–9 ms in

Figure 2 of Sasaki et al.,25 namely major radius R¼ 1.24 m,

minor radius a¼ 0.183 m, plasma current Ip � 120 kA, rever-

sal parameter F � �0.4, on-axis electron number density qe

� 1.9� 1019 m�3, parallel temperature Tk � 250 eV, perpen-

dicular temperature T? � 80 eV.

A significant difference from the isotropic zero-flow

limit presented in Sec. II A is that although the parallel and

perpendicular temperatures are constant in each region, the

pressures are not due to the variation of the plasma density

with magnetic field strength B given by Eq. (64). In the

isotropic limit, the plasma density becomes independent of

the magnetic field strength, and the pressure becomes con-

stant in each plasma region, in agreement with Eq. (6).

V. CONCLUSION

We have formulated an energy principle for equilibria

that comprise multiple Taylor-relaxed plasma regions,

including the effects of plasma anisotropy and flow. This

model is an extension of our earlier work that considered the

FIG. 2. Example anisotropic MRxMHD solution for an RFP in cylindrical

geometry with a single plasma volume. Panels (a) and (b), respectively,

show the magnetic field components and plasma pressure versus radial posi-

tion. The dashed lines in panel (a) indicate the magnetic field profile

expected if the pressure was assumed to be isotropic (g¼ 0).
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isotropic finite-flow limit,18 and the work of Sun and Finn1

who considered a special case of the single relaxed-region

anisotropic zero-flow limit. We have demonstrated that our

model reduces to anisotropic ideal MHD with flow in the

limit of an infinite number of plasma regions. This limit

demonstrates the validity of our anisotropic MRxMHD

model, and is, to our knowledge, the first variational princi-

ple for anisotropic plasma equilibria with general flow fields.

The numerical solution to the anisotropic MRxMHD model

with flow presented in this work will be the subject of future

work as an extension to the Stepped Pressure Equilibrium

Code (SPEC).27 Implementation of the anisotropic

MRxMHD model into SPEC will enable detailed compari-

sons between the predictions of our model in the case of

fully 3D plasmas with multiple relaxed-regions and high-

performance anisotropic tokamak discharges.
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APPENDIX A: DERIVATION OF THE MRxMHD
EQUATIONS

In this appendix, we derive the Euler-Lagrange equa-

tions for the plasma, Eqs. (31)–(36). The anisotropic plasma

equations for a single volume have been obtained previously

by Sun and Finn1 in the zero-flow limit and taking the func-

tion FðxÞ ¼ lnðxÞ in the magnetic dipole constraint G (see

Eq. (25)). Here, we extend that work by considering multiple

nested volumes, arbitrary functions F(x), and including the

effects of plasma flow. Our derivation is a generalization of

our earlier work18 to include anisotropy.

Equilibria of the anisotropic MRxMHD model are sta-

tionary points of the energy functional Eq. (30)

W ¼
X

i

Ei � �i Mi �M0
i

� �
� 1

2
li Ki � K0

i

� ��

�ki Ci � C0
i

� �
� Xi Li � L0

i

� �
�Ti Si � S0

i

� �
� gi Gi � G0

i

� �i
; (A1)

where �i, li, ki, Xi, Ti, and gi are Lagrange multipliers and

Ei, Mi, Ki, Ci, Li, Si, and Gi are defined in Sec. II.

Instead of introducing Lagrange multipliers to enforce

the toroidal and poloidal flux constraints as in Sec. III, we

use the approach of Spies et al.28 who showed that the flux

constraints are equivalent to the following relationship at the

interfaces:

n� dA ¼ �ðn � dxÞB; (A2)

where n is a unit normal vector perpendicular to the interface

boundary, dA is the variation of the vector potential, and dx

is the perturbation to the interface positions.

Setting the variations of W with respect to u, q, pk, and

p? to zero yield, respectively

qu ¼ kiBþ qXiR/̂; (A3)

�i ¼
1

2
u2 � 1

2
Ti ln

pkp
2
?

q5

 !
� 5

" #

�gi F
p?
qB

� �
� p?

qB
F0

p?
qB

� �� �
� XiRu � /̂; (A4)

pk ¼ qTi; (A5)

p? ¼ qTi þ gi

p?
B

F0
p?
qB

� �
; (A6)

which are equivalent to Eqs. (32)–(35).

The variation of W with respect to A is

dWjdA ¼
X

i

ð
Ri

dA �
(
r� B� kir� u� liB

þ gir�
p?
B3

F0
p?
qB

� �� �)

�
X

i

þ
dRi

n � dxð Þ B2 � 1

2
liA � B� kiu � B

�

þ gi

p?
B

F0
p?
qB

� �#
; (A7)

where @Ri ¼ I i�1 [ I i is the boundary of the plasma vol-

ume Ri, and I i is the plasma interface separating plasma

volumes Ri�1 and Ri (see Figure 1). The magnetic flux

boundary condition, Eq. (A2), has also been used in Eq. (A7)

to write the variation of the vector potential dA on the inter-

faces in terms of the variation to the plasma interfaces dx.

Requiring dWjdA to be zero for all choices of dA yields

r� B ¼ liBþ kir� u� gir�
p?
B3

F0
p?
qB

� �� �
; (A8)

which is identical to Eq. (31) upon using the identity

pk � p?

B2
¼ �gi

p?
B3

F0
p?
qB

� �
; (A9)

which follows from Eqs. (A5) and (A6).

The interface condition can now be obtained by consid-

ering the variation of W with respect to the interface positions

dWjdx ¼
X

i

þ
@Ri

n � dxð Þ 1

2
qu2 þ 1

2
B2 þ 1

2
pk þ p?

�

� �iq� kiB � u� qXiRu � /̂ � 1

2
liA � B

� � 1

2
Tiqln

pkp
2
?

q5

 !
� giqF

p?
qB

� �" #

�
X

i

þ
@Ri

n � dxð Þ B2 � 1

2
liA � B� kiu � B

�

þgi

p?
B

F0
p?
qB

� �#
; (A10)

where the remaining term of Eq. (A7) has been included.
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Equation (A10) simplifies to

dWjdx ¼
X

i

þ
I i

n � dxð Þ 1

2
B2 þ p?

� �� �
; (A11)

where [[x]]¼ xiþ1 – xi is the jump in x across the plasma

interface I i. Requiring this variation to be zero gives the

interface condition Eq. (36)

1

2
B2 þ p?

� �� �
¼ 0: (A12)

APPENDIX B: PROOF THAT MRXMHD SOLUTIONS
SATISFY ANISOTROPIC FORCE-BALANCE

In this appendix, we show that the minimum energy

MRxMHD states described by the Euler-Lagrange equations,

Eqs. (31)–(36), satisfy the anisotropic rotating-frame force-

balance condition Eq. (37).

The magnetic field in each plasma region obeys Eq.

(31), which is

r� B ¼ liBþ kir� uþr�
pk � p?

B2

� �
B

� �
: (B1)

Taking the cross-product of this with B yields

J�B¼�kiB� r�uð Þ�B r�
pk �p?

B2

� �
B

� �� 	
: (B2)

The first term on the right-hand side of Eq. (B2) can be

simplified using Eq. (32) to give

�kiB� r�uð Þ ¼ qXiR/̂� r�uð Þ� 1

2
qru2þq u �rð Þu:

(B3)

Substitution back into Eq. (B2) gives

q u � rð Þu ¼ J� B� qXiR/̂ � r� uð Þ þ 1

2
qru2

þB� r�
pk � p?

B2

� �
B

� �� 	
:

(B4)

Next we need to use the Bernoulli equation, Eq. (33), to

write the qr u
2 term in Eq. (B4) as an expression involving

the divergence of the pressure tensor. Using Eq. (34), the

Bernoulli equation can be written as

�i ¼
1

2
u2 � 1

2
Ti ln

Tip
2
?

q4
� 5

 !" #

�giF
p?
qB

� �
� Ti þ

p?
q
� XiRu � /̂: (B5)

We take the gradient of the Bernoulli equation to obtain an

expression involving qru
2

0 ¼ 1

2
ru2 � 1

2
Ti 2

rp?
p?
� 4
rq
q

� �

�giF
0 p?

qB

� �
p?
qB

� � rp?
p?
� rq

q
�rB

B

� �

þrp?
q
� p?

rq
q2
� Xir Ru � /̂

� �
: (B6)

Using Eq. (A9) to rewrite F0 in terms of physical quantities

gives

1

2
ru2 ¼Ti

rp?
p?
� 2
rq
q

� �
þ p?

q2
rq�rp?

q

�
pk � p?

q
rp?
p?
� rq

q
�rB

B

� �
þXir Ru � /̂

� �
; (B7)

which can be simplified to

1

2
qru2¼�rpk þ

pk �p?

B2

� �
1

2
rB2þqXir Ru � /̂

� �
: (B8)

Equation (B8) can now be used to eliminate the qru
2

term from Eq. (B4) to give

q u �rð Þu¼J�B�qXiR/̂� r�uð ÞþqXir Ru �/̂
� �

�rpkþ
pk�p?

B2

� �
1

2
rB2

þB� r�
pk�p?

B2

� �
B

� �� 	
: (B9)

This is almost in the desired form of Eq. (37), all that

remains to be shown is that the terms on the second and third

lines of Eq. (B9) are equal to �r � P
$

.

The last term of Eq. (B9) can be simplified to give

B� r�
pk � p?

B2

� �
B

� �� 	

¼
pk � p?

B2

� �
B� r� Bð Þ þ B� r

pk � p?

B2

� �
� B

� �
;

¼
pk � p?

B2

� �
B� r� Bð Þ þ B2r

pk � p?

B2

� �

� B B � rð Þ pk � p?

B2

� �
;

¼
pk � p?

B2

� �
B� r� Bð Þ � rB2

 �

þr pk � p?ð Þ

� B B � rð Þ pk � p?

B2

� �
;

¼ �
pk � p?

B2

� �
B � rð ÞBþ 1

2
rB2

� �
þr pk � p?ð Þ

� B B � rð Þ pk � p?

B2

� �
: ðB10Þ

Using this to replace the last term in Eq. (B9) gives

q u � rð Þu ¼ J� B� qXiR/̂ � r� uð Þ þ qXir Ru � /̂
� �

�rp? �
pk � p?

B2

� �
B � rð ÞB

� B B � rð Þ pk � p?

B2

� �
; ðB11Þ

where the last three terms are equal to �r � P
$

(see Eq. (55)).

We have now shown that the minimum energy

MRxMHD states satisfy the anisotropic rotating-frame

force-balance condition
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qðu � rÞu ¼ J� B�r � P
$
� qXiR/̂ � ðr � uÞ

þ qXirðRu � /̂Þ: (B12)

As shown in Dennis et al.,18 the last two terms of this

force-balance condition mean that the plasma may not be

time-independent in the laboratory frame, but will be time-

independent in a reference frame rotating about the Ẑ axis

with angular velocity Xi.
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